- Walter Borst Fon:+49 (0) 4721 6985100
Bo "t n"tomntlon Kapitaen-Alexander-Strasse 39 E-Mail: walter.borst@borst-automation.de

Embedded Solutions ;747 Cuxhaven, GERMANY Home: https://www.borst-automation.de/
Technical Data Sheet

Hart Slave Stack C++ 8.0

Technical Data Sheet

C++ Source Code for an Embedded Firmware Module with
the following Properties
e No external dynamic memory management. The
amount of reserved RAM remains constant.
e The number of objects is determined at compile
time and startup.
e No operating system is required to integrate the
software. Timer and serial interrupts are enough.
e Simple asynchronous user interface to encapsulate
the time-critical part.
e Implements the Uart protocol and Hart Ip.
The implementation is based on the Hart Documents in:
HART Communication Protocol Specification, HCF_SPEC-13, FCG TS20013 Revision 7.09,
Release Date: 06 January 2023

Details for the Hart Protocol are provided via the following link:
https://www.fieldcommgroup.org/technologies/hart.

Hart Slave Stack C++ 8.0 ...ciiuiiiumiin i i s s s s s s s sssssssnssnnnsnnnsnnnsnns 1
B3 8 oo X LT ot o o 1 2
Implemented Commandsvivviiiiii i aeas 2

N gl T (=Y [= 3
Hart Slave C++ Code.uiiiimiiiimiinnnsnnninnnssssssnnsnnnsssssasssnnssnsssnssnnnnnnsnnnn 4
[EY =] gl 1 1 (=] =T o 4

4 o ol 1 ¥ o o o o] 1= 4

[1) = T I L =T =T 6

Coding Considerationsocieiiiiiii e 6
Hardware AbStraction ...uvvviieii i i i e r e rrae e rnaeeranaees 7

1 o) 1= 7
System RequUirementS. ..o 8
Coding CoONVENTIONS . ..ttt aaeeans 9
Visual Studio 2022......cccciiiri i rr s s s s s s r s r s nrannnnnna 9
Test ENVIrONmMENt . . e 9
PrereqUISITES v 9
Development Directory Structurecovviviiiiiiiiiiiiiiiicee e 9

Project Structure....ociii i 10

Getting Started ..o 10

B =T o 1 0} (=] =L 11

Y 5T o =T o T 14
Y =] = o T 14

[X0 }70V0 3 | e =T IR e r= 1 o (o o TS 14
LAl ISSUBS ittt e 15

CON oMLY c i e 15

COPYHIGNT e e 15

I TR E= T o =1 1 0 2 P 15

Implemented Commands Hart Slave C++ 8.0 / 12.11.2025 Page 1 of 15

mailto:walter.borst@borst-automation.de?subject=Embedded%20Devices%20Simulation
https://www.borst-automation.de/
https://www.fieldcommgroup.org/technologies/hart

Walter Borst
A Kapitaen-Alexander-Strasse 39
Bo "t Embedded Solutions 7472 cuxhaven, GERMANY

Technical Data Sheet

Fon:+49 (0) 4721 6985100
E-Mail: walter.borst@borst-automation.de
Home: https://www.borst-automation.de

Introduction

Implemented Commands

| Description

| Remarks

Universal Commands

0 Read Unique Identifier

See also Command Summary
Specification

Read Primary Variable

Read Loop Current And Percent Of Range

Read Dynamic Variables And Loop Current

Read Loop Configuration

Read Dynamic Variable Classifications

Currently only the standard device

1
2
3
6 Write Polling Address
7
8
9

Read Device Variables with Status

variables are supported: 244, 245, 246,
247,248,249,0,1, 2, 3.

11 | Read Unique Identifier Associated With Tag

12 | Read Message

13 | Read Tag, Descriptor, Date

14 | Read Primary Variable Transducer Information

15 | Read Device Information

16 | Read Final Assembly Number

17 | Write Message

18 | Write Tag, Descriptor, Date

19 | Write Final Assembly Number

20 | Read Long Tag

21 | Read Unique Identifier Associated With Long Tag

22 | Write Long Tag

38 | Reset Configuration Change Flag

48 | Read Additional Device Status

The slave module saves a copy of the
last additional device status sent for
each master and compares it with the
bitstream provided by the user
application.

Common Practice Commands

33 | Read Device Variables

34 | Write Primary Variable Damping Value

35 | Write Primary Variable Range Values

49 | Write Primary Variable Transducer Serial Number

54 | Read Device Variable Information

Currently only the standard device
variables are supported: 244, 245, 246,
247,248,249,0,1, 2, 3.

108 | Write Burst Mode Command Number

Commands 1, 2, 3 and 9 are currently

109 | Burst Mode Control

accepted. Burst messages are not (yet)
supported.

512 | Read Country Code

513 | Write Country Code

I consider the now implemented set of commands to be the minimum that must be available
in a Hart slave. However, I also recommend making all important functions of a slave
accessible via universal and common practice commands and not using user-specific
commands. In this case it is not necessary to provide a device description. This saves

development time and development costs.

Implemented Commands Hart Slave C++ 8.0 / 12.11.2025 Page 2 of 15

mailto:walter.borst@borst-automation.de?subject=Embedded%20Devices%20Simulation
https://www.borst-automation.de/

Walter Borst Fon:+49 (0) 4721 6985100

Bo "t Embedded Soluti Kapitaen-Alexander-Strasse 39 E-Mail: walter.borst@borst-automation.de
moedde o_utions 27472 Cuxhaven, GERMANY Home: https://www.borst-automation.de
Technical Data Sheet
Architecture
[OSAL & C++ to C# Test Adapter]
----------------- ~N .
. ‘White Box’ Test Software
1
i User Firmware and | (T ———— 5
I Neake T WS Test Hart C++ SLA) 6.
1 Data ’I """" Update Slave Data Clear Display Record Off About
N == - - - Hart Hart Ip Identifier Transducer Device Device Variables | Additional Status Options
- \ Portable Hestneme Hart I St e
UserInteﬁhce Hart Last Hart [P Message sent
y, Slave Address: 255 Version: 1, Type: 1, Message ID: 3, Status: 0, Sequence Number: 5, Byte count: 32
Hart IP Payload (Hex):
\ Port: 2680 F90304051217001020530C3E0820C768032201054C 34894143 D21C 07 7C4D
Command -
I t t 395>SACKF| [Rsp] [S:00001]110€180 ICmd 0124 0/00110000]|254/Man0/Dev245/5 PRAs/Hart7/Txl/Sw2/Hu
nterpreter o ;
P
g J €1E€>LSTHP| [Req] [5:00002] 82180 FS 03 04 0S|Cmd 1| 0]
B - —_—— - a ; LACKD| [Rsp] [S:00002] 86180 FS 03 04 05|Cmd 1| 7| 0]00010000|BV 1:7.5 metex|76|
R s e Seatus
N\ Timecritical 18665 LST? | [Req] [5:000031 82180 £ 03 04 05 |Crd 2| 0 81
Hart Uart and Area LAk e -G 56156 £ 0 G oo £ 401 € s 16 a7 15
1 More Seatus
7: B044>LSTXP| [Req] [S:00004] (82|80 F3 03 04 05 |Cmdls|21] ITag: /Descr:16 CH DESCRIPTOR/Da
Hart Ip Slave i ,
. 35-LACKE| [R2p) (52000041 136180 £3 03 04 05 |Cndld 1231 0100010000 Tag: et pEScaIPTOR/D
\ J 1pstmm 41155 LoTHPI (Req) (51000051 132130 €3 03 08 05 Chaislatl . liegeHELTO et pEScaIPTOR/D
tick Sh-Lacke| (Rsp1 (55000081 8¢ : 2 - e o om
. =p) (52000051 16180 £3 03 04 05 |Crel6 23] 0|00010000|Tag:HELLO /Descr:16 CH DESCRIPIOR/Da
] o x -
~ @) Hart IP | Monitering active | Switch record off to stop monitering.) 0000010
N J N J
Y Y
C++ C#

The package Portable Hart Slave includes all sources needed to represent the slave part of
the Hart protocol. The package is written in standard C++ and does not use any direct
connection to a system environment. Data link layer, application layer (command
interpreter) and network management of the Hart protocol are implemented. The connection
to the outside occurs via three interfaces: The User Interface, a Time Trigger and the HAL to
the Uart interface.

I used the C# environment to debug the Hart slave code during development. In fact, it is
not(!) a simulation that is used here. The firmware is simply embedded in a Windows
environment that allows the code to run in real time(!). In this way, all functions of the
implementation can be analyzed in detail. The analysis of the temporal processes takes place
in the range of milliseconds.

The C# software (White Box Test) was developed to create a transparent user interface for
visualizing the data and communication processes. Visual Studio 2022 and .NET 6.0 were
used to keep the programming effort within limits.

The command interpreter is triggered from the C# environment, but this happens within a
'real' thread and not within a worker thread from .NET:

CommandInterpreter = new Thread(ExecuteCommandInterpreter);
CommandInterpreter.Priority = ThreadPriority.Highest;
CommandInterpreter.Start();

and in endless loop of the thread:

result = (EN_Bool)HartSlaveDLL.BAHASL_WasCommandReceived();
if (result == EN_Bool.TRUE8)
{
// Simulate typical application
Thread.Sleep(20);
command = HartSlaveDLL.BAHASL_ExecuteCommandInterpreter();

Architecture Hart Slave C++ 8.0 / 12.11.2025 Page 3 of 15

mailto:walter.borst@borst-automation.de?subject=Embedded%20Devices%20Simulation
https://www.borst-automation.de/

- Walter Borst
Bo "t nu‘omﬂtlon Kapitaen-Alexander-Strasse 39

Embedded Solutions 57472 cuxhaven, GERMANY

Technical Data Sheet

Fon:+49 (0) 4721 6985100
E-Mail: walter.borst@borst-automation.de
Home: https://www.borst-automation.de/

Hart Slave C++ Code

User Interface

Public Functions

The following functions are realized in the module
HartS_UartIface.cpp in the class CUartSlave. In the DLL
interface for the test client the function names are preceeded by

BAHASL_.

Declaration

Description

Operation

EN_Bool OpenChannel(
TY_Word port_number_,
EN_CommType type_);

The function allocates the selected com port if possible and starts its own working
thread for accessing the Hart services. The port_number _is limited to the range of]
1 ..254. The selected communication type (type) should be UART in this version
of the paket. The function returns TRUES if successful.

In the present implementation only a single channel is possible. Thus no channel
handle is required.

void CloseChannel();

It is required to call this function at least when the application is terminating.

Data Interface

void GetConstDataHart(
TY_ConstDataHart* const_data_);

Copies constant data from the Hart slave area to the test application area.

void SetConstDataHart(
TY_ConstDataHart* const_data_);

Copies constant data from the application area to the Hart slave area.

void GetDynDataHart(
TY_DynDataHart* dyn_data_);

Copies dynamic data from the Hart slave area to the test application area.

void SetDynDataHart(
TY_DynDataHart* dyn_data_);

Copies dynamic data from the application area to the Hart slave area.

void GetStatDataHart(
TY_StatDataHart* stat_data_);

Copies static data from the Hart slave area to the test application area.

void SetStatDataHart (
TY_StatDataHart* stat_data_);

Copies static data from the application area to the Hart slave area.

Command Interpreter

EN_Bool WasCommandReceived();

The function returns FB_Bool:: TRUES if the Hart protocol has recently (a few
milliseconds ago) received a command.

TY_Word ExecuteCommandInterpreter();

This function calls the command interpreter in the slave to process any new data.
If the command was recognized and executed, the function returns the number of
the command. If this was not the case, the value 0xffff is returned.

Encoding

void PutInt8(
TY_Byte data_,
TY_Byte offset_,
TY_Byte* data_ref_);

Insert an integer 8 into the byte array buffer pointed to by data_ref starting at the
position offset_.

void PutInt16(
TY_Word data_,
TY_Byte offset_,
TY_Byte* data_ref_,
EN_Endian endian_);

Insert an integer 16 into the byte array buffer pointed to by data_ref starting at the
position offset_. Start with the most significant byte if endian is MSB_FIRST(0),
which is the Hart standard.

User Interface

Hart Slave C++ 8.0 / 12.11.2025

Page 4 of 15

mailto:walter.borst@borst-automation.de?subject=Embedded%20Devices%20Simulation
https://www.borst-automation.de/

- Walter Borst
Bo "t nu‘omﬂtlon Kapitaen-Alexander-Strasse 39

Embedded Solutions 57472 cuxhaven, GERMANY

Technical Data Sheet

Fon:+49 (0) 4721 6985100

E-Mail: walter.borst@borst-automation.de

Home: https://www.borst-automation.de/

void PutInt24(
TY_DWord data_,
TY Byte offset_,
TY_Byte* data_ref_,
EN_Endian endian_);

Insert an integer 24 into the byte array buffer pointed to by data_ref starting at the
position offset_. Start with the most significant byte if endian is MSB_FIRST(0),
which is the Hart standard.

void PutInt32(
TY_DWord data_,
TY_Byte offset_,
TY_Byte* data_ref_,
EN_Endian endian_);

Insert an integer 32 into the byte array buffer pointed to by data_ref starting at the
position offset . Start with the most significant byte if endian is MSB_FIRST(0),
which is the Hart standard.

void PutInt64(
TY_DWord data_,
TY_Byte offset_,
TY_Byte* data_ref_,
EN_Endian endian_);

Insert an integer 64 into the byte array buffer pointed to by data_ref starting at the
position offset . Start with the most significant byte if endian is MSB_FIRST(0),
which is the Hart standard.

void PutFloat(
TY_Float data_,
TY_Byte offset_,
TY_Byte* data_ref_,
EN_Endian endian_);

Insert a single precision IEEE 754 float value into the byte array buffer pointed to
by data_ref starting at the position offset. Start with the most significant byte if
endian is MSB_FIRST(0), which is the Hart standard.

void PutDFloat(
TY_DFloat data_,
TY_Byte offset_,
TY_Byte* data_ref_,
EN_Endian endian_);

Insert a double precision IEEE 754 float value into the byte array buffer pointed to
by dataRef starting at the position offset. Start with the most significant byte if
endian is MSB_FIRST(0), which is the Hart standard.

void PutPackedASCII(
TY_Byte* asc_string ref_,
TY_Byte asc_string len_,
TY_Byte offset_,
TY_Byte* data_ref);

Insert a string (asc_string_ref) of the length of asc_string_len_ in packed ASCII
format into the byte array buffer pointed to by data_ref starting at the position
offset . It is recommented that asc_string_len_ is an ordinary multiple of 4.

void PutOctets(
TY_Byte* stream_ref_,
TY_Byte stream_len_,
TY_Byte offset_,
TY_Byte* data_ref);

Copy a number of stream_len_ bytes into the byte array buffer pointed to by
data_ref starting at the position offset .

void PutString(
TY_Byte* string_ref_,
TY_Byte string _max_len_,
TY_Byte offset_,
TY_Byte* data_ref);

Copy a string from string_ref to data_ref . The actual number of characters
stored cannot be greater than string_max_len_. If the string contains a null, the last
character saved is a null character if this does not exceed the string_max_len_
limit.

Decoding

TY_Byte PickInt8(
TY_Byte offset_,
TY_Byte* data_ref_);

Return the value of the byte in the byte array buffer pointed to by data_ref from
the position offset_.

TY_Word PickInt16(
TY_Byte offset_,
TY_Byte* data_ref_,
EN_Endian endian_);

Return the value of the integer 16 from the byte array buffer pointed to by
data_ref from the position offset . Assume that the most significant byte is the
first if endian is MSB_FIRST(0), which is the Hart standard.

TY_DWord PickInt24(
TY_Byte offset_,
TY_Byte* data_ref_,
EN_Endian endian_);

Return the value of the integer 24 from the byte array buffer pointed to by dtaRef
at the position offset. Assume that the most significant byte is the first if endian is
MSB_FIRST(0), which is the Hart standard.

TY_DWord PickInt32(
TY_Byte offset_,
TY_Byte* data_ref_,
EN_Endian endian_);

Return the value of the integer 32 from the byte array buffer pointed to by
data_ref from the position offset . Assume that the most significant byte is the
first if endian is MSB_FIRST(0), which is the Hart standard.

TY_UInt64 PickInt64(
TY_Byte offset_,
TY_Byte* data_ref_,
EN_Endian endian_);

Return the value of the integer 64 from the byte array buffer pointed to by
data_ref from the position offset . Assume that the most significant byte is the
first if endian is MSB_FIRST(0), which is the Hart standard.

TY_Float PickFloat(
TY_Byte offset_,
TY_Byte* data_ref_,
EN_Endian endian_);

Return the value of the single precision IEEE754 number from the byte array
buffer pointed to by data_ref from the position offset . Assume that the most
significant byte is the first if endian is MSB_FIRST(0), which is the Hart standard.

User Interface

Hart Slave C++ 8.0 / 12.11.2025

Page 5 of 15

mailto:walter.borst@borst-automation.de?subject=Embedded%20Devices%20Simulation
https://www.borst-automation.de/

Bo "t Embedded Solutions

Walter Borst
Kapitaen-Alexander-Strasse 39
27472 Cuxhaven, GERMANY

Fon:+49 (0) 4721 6985100
E-Mail: walter.borst@borst-automation.de
Home: https://www.borst-automation.de

Technical Data Sheet

TY_DFloat PickDFloat(
TY_Byte offset_,
TY_Byte* data_ref_,
EN_Endian endian_);

Return the value of the double precision IEEE754 number from the byte array
buffer pointed to by data_ref from the position offset . Assume that the most
significant byte is the first if endian is MSB_FIRST(0), which is the Hart standard.

void PickPackedASCII(
TY_Byte* string ref_,
TY_Byte string_len_,
TY_Byte offset_,
TY_Byte* data_ref);

Generate a string and copy it to the buffer pointed to by sb. The final string should
have the length string_len. The packed ASCII source is a set of bytes in the byte
array buffer pointed to by data_ref , starting at index offset .

Note: The string length has to by a multiple of 4 while the number of
packedASCII bytes is a multiple of 3.

void PickOctets(
TY_Byte* stream_ref_,
TY_Byte stream_len_,
TY_Byte offset_,
TY_Byte* data_ref);

Copy a number (numOctets) of bytes from the byte array buffer pointed to by
dataSource to the user buffer pointed to by dataDestination.

void PickString(
TY_Byte* string_ref_,
TY_Byte string _max_len_,
TY_Byte offset_,
TY_Byte* data_ref_);

The function reads a string from a buffer (data_ref) starting at index offset and
stores the characters in string_ref . The string buffer is read from until a null
character appears or string_max_len_ is reached. If possible, the null character is
also saved.

Internal

void FastCyclicHandler(TY_Word time _ms_);

Although this function is not accessible to the test client, it is required for the
operation of the Hart protocol. The function must be called by a separate task
approximately every millisecond to enable timing in the communication.

The time_ms parameter indicates how many milliseconds have passed since the
last call. Usually this should be a value of 1 in most cases.

Data Interface

The data interface provides three different types of data that
can be written or read by the user. A structure is provided for
each data type, which can be found in the file
WbHartS_Structures.h.

Constant data does not change. In most systems it is stored in
flash memory and cannot be written.

Dynamic data is data that can always change. This includes
measured values and status information.

Static data is used to configure a device. It is usually changed
by external access. Whenever static data is changed, the
configuration change flag must be set in Hart and the
configuration change counter in Hart must be incremented.

Coding Considerations

&~ Low amount of memory.

%" The user needs source
code.

Microcontrollers which are used today for HART devices are at
least 16 Bit microcontrollers. Otherwise the complexity of the
measurement and number of parameters could not be
managed.

The amount of memory is always critical because software kind
of behaves like an ideal gas. It uses to fill the given space.
Nevertheless, the coding of the Hart Slave was done as carefully
as possible regarding the amount of flash memory and RAM.

The Hart Protocol requires a strict timing specially for burst
mode support and the primary and secondary master time slots.
To provide the optimum transparency to the user to allow all
kinds of debugging and to give the opportunity to optimize code
in critical sections, the Hart Slave Firmware is not realized as a
library but delivered as source code.

Coding Considerations

Hart Slave C++ 8.0 / 12.11.2025 Page 6 of 15

mailto:walter.borst@borst-automation.de?subject=Embedded%20Devices%20Simulation
https://www.borst-automation.de/

Walter Borst Fon:+49 (0) 4721 6985100

Bo "t A Kapitaen-Alexander-Strasse 39 E-Mail: walter.borst@borst-automation.de
Embedded Solutions ;747> Cuxhaven, GERMANY Home: https://www.borst-automation.de

Technical Data Sheet

Hardware Abstraction

® OSAL is including the A Hardware Abstraction Layer is needed to design the interface
HAL. of a software component independent from the hardware
platform. In this very small interface of the Hart master a
distinction of HAL and OSAL was not made. Therefore only an
Operating System Abstraction Layer is defined which is covering
all the needs of an appropriate HAL.

List of Files

Category |Name

Description

02-Code

01-Common OSAL.h

The Operating System Abstraction Layer is the top header. This is where the
central connection to the respective hardware or software platform takes
place. The header OSAL.h can only exist once, while a special
implementation (OSAL.cpp) exists for each specific hardware or software.

HartCoding.cpp/h

This module combines functions that carry out the encoding and decoding of
communication primitives and data objects.

HartFrame.cpp/h

The hart frame is a construct used to collect all information which is needed
to encode and decode data of so called service primitives like responses and
requests, which are finally octet streams.

HartLib.h

Some classes for the definition of HART constants.

02-Code\01-Common

01-Interface HartSlaveIface.cpp/h

This is where the actual interface of the master implementation is located,
which would also have to be integrated into an embedded system. The
version with the DLL is only intended for testing under Windows.

You can find a detailed description of the provided functions in the 'Public
Functions' chapter.

WbHartS_Structures.h

This file contains structures which are accessed at the outer interface as well
as in some modules in the master kernel.

WbHartS_TypeDefs.h

This file contains type definitions which are used in all modules in the Hart
master kernel.

WbHartUser.h

Limits applied by the user of the hart master software.

HartDevice.cpp/h

This module is nearly empty and subject to be removed.

02-AppLayer HartChannel.cpp/h

The channel manages a communication interface and the associated
propperties. The channel also uses services to conduct Hart commands.

HartBurst.cpp/h

Handling of the burst mode from the perspective of the application.

AnyCommandIntp.cpp/h

Any command interpreter for common practice and user commands.

03-Layer?7 HartService.cpp/h

In simple terms, a service executes a Hart command by passing a request to
Layer2 of the Hart protocol. In doing so, it returns a handle to the caller, with
which the calling program can check the status. A service is only considered
completed when the caller has read the response (e.g. FetchConfirmation).

HartData.cpp/h

Data defined for the Hart commands.

UniCommandIntp.cpp/h

Universal commands interpreter.

Hardware Abstraction Hart Slave C++ 8.0 / 12.11.2025 Page 7 of 15

mailto:walter.borst@borst-automation.de?subject=Embedded%20Devices%20Simulation
https://www.borst-automation.de/

Walter Borst

Bo "t ; Kapitaen-Alexander-Strasse 39
Embedded Solutions ;7472 cuxhaven, GERMANY

Technical Data Sheet

Fon:+49 (0) 4721 6985100
E-Mail: walter.borst@borst-automation.de
Home: https://www.borst-automation.de

04- Laye r2 HSuartLayer2.cpp/h and |This module implements the entire state machine of the Hart communication
01-Uart HSipLayer2.cpp/h protocol (CHartSM) including the state machines for sending (CTxSM) and
receiving (CRxSM) bytes.
02-Hartl P HSuartMacPort.h and The interface to the MAC port is relatively narrow and can be defined
HSipMacPort.h generically. However, the implementation depends on the hardware and

software environment. That's why there is only a header at this point, while
the files HMuartMacPort.cpp and HMipMacPort.cpp can be found in the

OSAL area.
HSuartProtocol.cpp/h This protocol layer controls the UART interface on the lower level and calls
and the higher status machines when necessary (events). After this call, a ToDo
HSipProtocol.cpp/h Part occurs, which in turn affects the Uart or Hartlp interface.
Monitor.h The same applies to the Monitor function as to the MacPort. At this point

only the interface can be defined. The implementation takes place in the
specific part.

02-Code\02-Specific\01-WinDLL

01-Shell BaHartSlave.cpp/h The implementation for the calls to the Windows DLL is located here. In
practice, it is just a shell through which the functions in the CUartMaster
module are called.

02-OSAL HSuartMacPort.cpp and |The Execute method is called directly by the fast cyclic handler. This
01-Uart HSipMacPort.cpp basically drives all status machines in the Hart implementation. Here too, the
method is divided into an Event handler and a ToDo handler.

02-Hartlp Monitor. cpp On the one hand, there are methods that are mapped to the interface of the
Windows DLL. In addition, there are a number of functions that are included
with the kernel functions. Since this module is so small overall, the methods
were not implemented in two different files.

OSAL. cpp The Operating System Abstraction Layer maps general functions to the
operating system.

WinSystem.cpp/h The OSAL concept cannot be applied to all functions that are required.
These functions were implemented in the code of this module.

System Requirements

It is difficult to estimate the system requirements for targets
based on different micro controllers and different development
environments. The following is therefore giving a very rough
scenario for the target system estimated resources.

Item Requirement/Size Comment
RAM 32k Depends very much on the addressing structure of the
controller and the used compiler and linker.
ROM (Flash) 100k
Timi ng 1-2 ms Timer 2 ms is the minimum requirement, 1 ms would be much
interrupt better.

50 ms cyclic call
from task level

This is needed to run the command interpreter.

I/ (0] UART and Hart MODEM
Rx and Tx functions

Carrier detection would be helpful but is not required.

System Simple math +-*/
memcpy ()

memset ()

memcmp ()

1 ms timing
resolution

Only a few standard library functions are required. There is
no special need for multi tasking, messaging or semaphores.

Table 1: Embedded System Requirements

System Requirements Hart Slave C++ 8.0 / 12.11.2025 Page 8 of 15

mailto:walter.borst@borst-automation.de?subject=Embedded%20Devices%20Simulation
https://www.borst-automation.de/

Borst

Avtomation

Embedded Solutions

Walter Borst

Technical Data Sheet

Kapitaen-Alexander-Strasse 39
27472 Cuxhaven, GERMANY

Fon:+49 (0) 4721 6985100
E-Mail: walter.borst@borst-automation.de
Home: https://www.borst-automation.de/

Coding Conventions

Regarding this issue, I have only defined some formats that makes the scope of a label
clearer. It's just to make the code easier to read. This simple type of coding convention can

be used in both C+

+ and C#.

Snake Case

local_variable

function_param_

m_member_var mo_member_object

Variable with local sco

pe
a tailing underscore

A function parameter has

Basic type private
member variable

Complex object member

s_member_var

so_member_object

Basic type static private

Complex static object

member variable member
Pascal Case
PublicVariable PublicObject AnyMethod

Variable with public or
internal scope

Object with public or
internal scope

No difference between
public and private

Visual Studio 2022

Test Environment

Solution Explorer
PR

Oa| =]

There are only one project in this solution. The C++ Hart

| Search Solution Explorer (Ctrl+

Slave is encapsulated in the HartSalveDLL project.

a) The solution is directly in the path on which you copied the

53 Solution 'CppHartSlave-7.6' (1 of 1 project) paCkage to.
P 1 Sclution ltems
b HartSlaveDLL

Prerequisites

Microsoft Visual Studio Community 2022 (64-bit)

Version 17.9.6
© 2022 Microsoft Carporation.
All rights reserved.,

Version 4,8.09032

@ 2022 Microseft Cerporation,
All rights reserved,

Microsoft .MET Framework

The solution must be opened with VS
2022. However, the community version
is sufficient. There are no further
requirements.

Development Directory Structure

NS
01-Docu
02-Device
01-Generic |
02-Specific
01-WinDLL
01-Hart
01-Slave
11-Nrf32832
01-Docu
02-Device
01-Generic
02-Specific
03-Test
01-Windows
01-Docu
02-Apps
01-Hart
03-DebugBench

Mame

01-5hell

02-05AL

03-Build
[HartSlaveDLL.vexproj
D HartSlaveDLL voxproj.filters
D HartSlaveDLL.voxproj.user

[2] BaHartSlave-7.6.dll
£ BaHartSlave-7.6.exp
[7] BaHartSlave-7.6.lib
[] BaHartSlave-T.6.pdb
I E Microsoft. AspMetCore SystemV
@ ReadMe.txt
E System.Runtime.Caching.dll
@ TestCppSlave.deps.json
[] TestCppSlave.dil
D TestCppSlave.dll.config
Q;E'.! TestCppSlave.exe

The project for the Hart Slave in C++ can be
found in the directory:
\02-Device\02-Specific\01-WinDLL\O1-Hart\
01-Slave.

However, most of the C++ sources used are
located in the directory .\02-Device\O1-Generic\
and its subdirectories.

The test software is only be found as executable
in the path 03-DebugBech. The executable file
TestCppSlave.exe and the simulation DLL
BaHartSlave-7.6.dll are both located here.
When you start debugging the executable ist
started and loading the dll which is
respresenting the slave device.

Coding Conventions

Hart Slave C++ 8.0 / 12.11.2025

Page 9 of 15

mailto:walter.borst@borst-automation.de?subject=Embedded%20Devices%20Simulation
https://www.borst-automation.de/

Borst

- Walter Borst Fon:+49 (0) 4721 6985100
n"tomntlon Kapitaen-Alexander-Strasse 39

E-Mail: walter.borst@borst-automation.de

Technical Data Sheet

Embedded Solutions ;747 Cuxhaven, GERMANY Home: https://www.borst-automation.de/

Project Structure

4 [01-Commen

F

4
P
b
[
[
P

57 01-Interface

*+1 HartDevice.cpp
HartDevice.h

++ HartSlavelface.cpp
HartSlavelface.h
WhHart5_Structures.h
WhbHart5_Typedefs.h
WhHartUser.h

EF 02-Applayer

b+ AnyCommandintp.cpp
P AnyCommandintp.h

b T4 HartBurst.cpp

[HartBurst.h
p
b

v v v v v v v

4+ HartChannel.cpp
HartChannel.h
57 03-Layer?
b +4 HartData.cpp
3 HartData.h
bty HartService.cpp
[HartService.h
b T4 UniCommandintp.cpp
4 UniCommandintp.h
EF 04-Layer2
b B 01-Uart
b Eg 02-Hartlp
] Meonitor.h
+4 HartCoding.cpp
HartCeding.h
HartConsts.h
*++ HartFrame.cpp
HartFrame.h
05ALR

b EF 02-Specific(Windows)
B BaHartSlaveDLLrc

Getting Started

The project structure is very similar to the directory structure.
Here too there is a strict distinction between generic area and
specific area.

The specific contents of the files are described in more detail in the
list below.

In contrast to the last published documentation, there is one
significant difference. The data link layer is divided into the areas
Uart and HartIp. The same applies to the Mac port in the OSAL
directory.

1. Unzip the file hart-master-slave-c++-demo-7.6.1.zip into
a directory of your choice. For getting the required
password please send an e-mail to:
Hart@walter-borst.de.

2. Open the solution .\03-Slave\CppHartSlave-7.6.sIn with
Visual Studio 2022. It has to be 2022. Other versions are
not supported yet. Unless you have 2022 not installed on
your computer. You can download it from microsoft:
https://visualstudio.microsoft.com/de/downloads/.

3. The community version is sufficient enough and free of
charge.

Perform a 'Build All'.
5. Start debugging and investigate the source code

Getting Started

Hart Slave C++ 8.0 / 12.11.2025 Page 10 of 15

mailto:walter.borst@borst-automation.de?subject=Embedded%20Devices%20Simulation
https://www.borst-automation.de/
mailto:Hart@walter-borst.de?subject=Hart%20Slave%20Datasheet
https://visualstudio.microsoft.com/de/downloads/

Walter Borst Fon:+49 (0) 4721 6985100
Bo "t A Kapitaen-Alexander-Strasse 39 E-Mail: walter.borst@borst-automation.de
Embedded Solutions ;747> Cuxhaven, GERMANY Home: https://www.borst-automation.de/

Technical Data Sheet

Test Interface

The Windows test adapter is a software developed in C#. This
test adapter uses a Windows DLL in which the Hart Master is
embedded. The DLL implements the HART Protocol, whose
firmware was written in C++ for real time requirements.

Test Adapter

(Test Client) | DLL(OSAL) |
C# Hart Uart and
Hart Ip Slave
Reuseable Source Code = C++

|\ HAL /|

PC Com Port
or Network
Any Hart Master Modem

Figure 1: Architecture of the Test Environment

The executable file for the test adapter is located at the
following location:
.\03-Slave\03-Test\01-Windows\0@3-DebugBench\BaTestHartSlave.exe

P& Test Hart C++ SLAVE, V 76 - 0 % When the executable file
Update Slave Data Clear Display Record OFf About | |S started, the container
[Hart | Hartlp | Identifier | Transducer | Device | DeviceVariables | Additional Status | Options DLL for the slave is
Interface Settings Hart Communication View automatically loaded.
ComPort HartlP = B Preameles - [Jfemefumeers [JAddes - The work surface is
Poll Address: A_00 - [eziiEen (L kg 8 satusdetis | divided into two halves.
Baudrate 1200~ 8522:311‘3; e Pt Hart Slave 7.6.1 Settings are made in the

tab area, while the lower

--->SSTEP| [Req] [5:0000L1] [Cmd 01 O] 182 .
1- area is reserved for a
372SACKP| [Rsp] [S:00001] |Cmd 0]24] 0100110000254/ Man0/Dev249/5 PAs/Hart?/Txl/Sw2/Hw24/FLO00OOO00/ID 0203 0x0: .
MinPArsp:s/ManliumDVs : 0/CEgChCnt - 0/ExtDevStat: 00000000 monitor that ShOWS the
ManuID:0x00E0/LabDistID: 00E1/Profile:0|BE . .
1c Cold Start, More Status communication process.
L1669>LSTXP| [Req] [5:00002] |Cnd 1| O] |F8| . .
1: While the following tabs
32>LACKP| [Rsp] [5:00002]1 1Cmd 1| 71 010001000018V 1:7.5 meter|7€| .
1 Hore Stazus mostly deal with the slave
2620>LSTHP| [Req] [$:00003] |Cmd 3| 0] IER| . .
i data, the inputs in the
37-LACEP| [Rsp] [5:00002] |Cmd 2126| 0100010000 |Curz:18 mk h A
BV - 7.5 meter / BV 2: 1250 mbar interface have a fa|r|y
IV 3: L kg/l / DV 4: 20 °CI26| .
1« More Status
59555-LSTXE | [Req] [5:00004] ICmd 3| 71 |DV: 244,245,0,1,4,5,€|F0| direct effect on the
1< H
39>LACKP| [Rsp] [5:00004]1 ICmd 91631 0100010000 |Extended Device Status: 00000000 running software. For
OV 244 / Class: o/ 75 % / Status:11000000 iti i
DV 245 / Class: 84 / 1€ ma / Status:11000000 examplel itis DOSSIble to
DV 0 / Class: €5 / 7.5 meter / Status:11000000 H
DV 1/ Class: &5 / 1250 mbar / Status:11000000 activate burst mode
DV 4/ Class: 0/ Nall not used / Status:00110000 H P
DV & / Class: 0/ Nall not used / Status:00110000 without haVIng to use the
DV € / Class: 0 / Wall not used / Status:00110000
Time Soame. Sisfese w32 malfe) Hart command 109.
1« More Status
@ Hart IP | Monitoring active | Switch record off to stop monitoring. &) 000000

Screenshot 1: The Tab 'Hart'

Test Interface Hart Slave C++ 8.0 / 12.11.2025 Page 11 of 15

mailto:walter.borst@borst-automation.de?subject=Embedded%20Devices%20Simulation
https://www.borst-automation.de/

- Walter Borst
Bo "l nu‘omﬂtlon Kapitaen-Alexander-Strasse 39

Embedded Solutions 57472 cuxhaven, GERMANY

Technical Data Sheet

Fon:+49 (0) 4721 6985100
E-Mail: walter.borst@borst-automation.de
Home: https://www.borst-automation.de/

Data Exchange

Update Slave Dats The following tabs deal with the transmitter data. If this data is
wiables | Additional Status | Optio edited, this is indicated by a yellow color. The menu button also

turns yellow and must be clicked
the slave.

Message @ If a parameter is changed by a m

Message: |MESSAGE

for the change to take effect in

aster connected to the slave, this

change appears in the display and the parameter in question is

colored red

74 Test Hart C++ SLAVE, V 7.6.1

- [m] x

Hart | Hart Ip ‘ Identifier | Transducer ‘ Device | Device Variables | Additional Status ‘ Options |

Last Hart IP Message sent:

Update Slave Data Clear Display Record Off About

Host name: Hart IP Status: |NoData\WAITRESPONSE ‘ Last Eror: |NONE

If Hart IP is used, additional
parameters are needed to
connect to the slave. However,
currently the demo version
works on localhost.

Address: [235.255.255.253 Version: 1, Type: 1, Message ID: 3, Status: 0, Sequence Number: 1, Byte count: 29
Hart [P Payload (Hex):

Port: 0650 00 13 00 30 FE 00 F9 05 07 01 02 18 00 03 04 05 05 D0 00 00 0D 0D EO 0O E1 00 BS

~—->5S5TXP| [Req] [5:00001] [Cmd O] O] 182

1-

35>SACKP| [Rspl[S:00001] |Cmd 0/24] 0100110000 |254/Man0/Dev243/5 PAs/Hart7/Txl/Sw2/Hw24/FLO0000000/ID 0x03 C
MinPRrsp:5/MaxumDVs :0/CEgChCat : 0/ExtDevStat : 00000000
ManuID:0x00EQ/LabDistID:00El/Profile:0|BE|

1 Cold Start, More Status

) Hart IP | Monitoring active | Switch record off to stop monitering.

) 0000002
Screenshot 2: The Tab 'Hart Ip’
W Test Hart o SLAVE V761 - o~ | The tab 'Identifier' mainly deals
Update Slave Data Clear Display Record Off About

Hart | HartIp | |dentifier ‘ Transducer ‘ Device ‘ Device Variables | Additional Status | Options |

Signaling (Table 10): D Config Change Counter: [65535 | Profile (Table 57):
Flags (Table 11): El Extended Status (Table 17): Details
Cmd0 Tablel
S oime e Koo Pt Device Unique D (hex): [0x030405 Manufacturer (Table8): [0<00ED |~ ==

Teble 8 Table 17

Hardware Revision Level Last Dev Variable Code: El Distributor (Teble8): [0:00E1 | Lp1 10 Table 57

Device Type (Table 1):

Device Revision Level:

with data related to command 0.

~SSTEP|FF FF FF FF FF|Cmd 0| 0| 1821

ACKE|FF FF FT FF FF|Cmd 0(24] 0]00110000|FE 00 FS 05 07 01 02 16 00 03 04 05 05 00 00 00 40
Cold Start, More Status

3] COM 9| Monitoring active | Switch record off to stop monitoring.

00 E0 00 EL

@) 0000002
Screenshot 3: The Tab 'Identifier’
e Test Hart C++ SLAVE, 7.6.1 _ o %
Update Slave Data Clear Display Record Off About

Hat | Hartlp | Identifier |[Transducer | Device | Device Variables | Adcitionsl Status | Options |

Serial Number: Unit: T-Function: |Lm(0] v‘ Flags: ‘10100101 ‘

Upper Limit: Unit: Lower Range: Damping: s
Lower Limit: Write Protect: Alarm Select: Table 26

Min Span: [100.0

The tab 'Transducer' mainly
deals with data related to the
commands 14 and 15.

59559>LSTHP | FF FF FF FF FF|Cmdld4| 0| IE7|
185<
~LACKE|FF FF FF FF FF|Cmdl4 (18]

0100010000 | SensSerlum:1234567/SensLim:500 to 5000 mbar/MinSpan:100 mbar|
More Status
STXP|FF FF FF FF FF|CxdlS| 0| IFE|

36>LACKP|FF F¥ FF FF FF|Cmd15|20| 0|00010000|Not Used/Linear/Range:0 to 10 mbar/Damping:ls/WrProt: No/250/
312« More Status

3] COM 9| Menitering active | Switch record off to stop monitering. &) 0000006

Screenshot 4: The Tab 'Transducer’

Test Interface Hart Slave C++ 8.0 / 12.11.2025 Page 12 of 15

mailto:walter.borst@borst-automation.de?subject=Embedded%20Devices%20Simulation
https://www.borst-automation.de/

Fon:+49 (0) 4721 6985100

- Walter Borst
Bo "l nu‘omﬂtlon Kapitaen-Alexander-Strasse 39 E-Mail: walter.borst@borst-automation.de

Embedded Solutions 3747, Cuxhaven, GERMANY Home: https://www.borst-automation.de/

Technical Data Sheet

W& C++ Hart Slave Test

- © * |The tab 'Device' mainly deals

Update Slave Data Clear Display Record Off About With data related to the
Hart | Hart Ip ‘ |dentifier ‘ Transducer |IDEV|:E ‘ Device Varisbles | Additionsl Status ‘ Options ‘ commands 12, 13, 16 and 20.

Long Tag: [32 Characters Iso Latin-1 Message: (32 CAPITAL LETTER CHARACTERS |

Shart Tag: [3CHR TAG Final Assembly Number: m’m
Description: [16 CH DESCRIPTOR Country Code: C] 51 Units only
Day: Manth: Year: [2024

--->LSTXD|Cmdl2| 0] 175
1s8
35>LACKP|Cmd12]26| 0|00010000|32 CAPITAL LETTER CHARACTERS 10|
368 More Status
S€5>LSTEP|Cmdl3| 0] 1F4]
1e0
35>LACKR|Cmdl3123| 01000100001 9CHR TAG/lE CH DESCRIPTOR/Date:1.7.2024&0)
342 More Status
14105>LSTEP|Cmdl€] 0] 1E5]
158
37-LACKP|Cmdl€] S| 0100010000|FinalAssenblyNunber :77777711C]
17¢ More Status
16782>LSTHP| Cmd20] 0] 1ED|
160
37>LACKP|Cmd20]34| 0|00010000|Long Tag:32 Characters Iso Latin-1 1271
442 More Status

3] COM 9| Monitoring active | Switch record off to stop monitoring.
—_

) 0000008

Screenshot 5: The Tab 'Device’

G Cv+ Hart Slave Test

-~ © * The 'Device Variables' tab

Recerd0ff - sbeut | nrovides access to the data
needed to implement device

Clss: variables. Currently, only device

wee oo | | variable codes in the range 244-

Update Slave Data Clear Display
Hart | Hart Ip | Identifier ‘ Transducer | Device Hm‘ Additional Status | Qptions ‘
Percent [244) Current (245) PV1 (0, 246) PV2 (1, 247) PV3 (2, 248) PV4 (3, 249)
Class: 0 Class: 84 Class: Class: Class:
Value [75.0 | value [150 | vawe 75 | value: [12500 | value [10 |
% mA Unit: [meter | Unit: [mbar ~| Unit: [kg/l

<[we [~] 1249 and 0..3 are accepted. These

© Good O Bad © Good O Bad O Good O Bad 0O Good () Bad O Good () Bad

Oed D84 | gre the only required device

0= More Status

) Hart IP | Monitoring active | Switch record off to stop monitoring.

———>LSTEP| [Req] [S:00002] ICmd 91 71 IDV: Z244,245,24€,247,248,249,€1F01 H
variables.

40>LACEP| [Rsp] [S:00002] |ICmd S1€31 0100010000|Extended Device Status: 00000000 .
2 244 / Class: 07 78 / statas Of course, further variables for
DV 245 / Class: 24 J 1€ mA / Status .
DV 24€ / Class: &9 f 7.5 meter / Status 00 h bl y i
DV 247 / Class: €5 / 1250 mbar / Status o0 t e user are pOSSI e at an tlme'
DV 248 / Class: NEA 1l kgsl / Status 00 o0
DV 24% / Class: €4 20 *c J/ Status:11000000
DV € / Class: a/ NaN not used / Status:00110000
Time Stamp: B€553€ 1/32 ms|€l|

Screenshot 6: The Tab 'Device Variables'

W& C++ Hart Slave Test - m] X
Update Slave Data Clear Display Record OFf About

Hart | Hart Ip ‘ Identifier | Transducer | Device ‘ Device Variables ‘ Additional Status | Options |

Device Specific Status 0-5: |cm11(m ||1ooooom Hoonuoo Hmwmoo memmo Hmmu |

Standardized Status 0-3: |000100w ||000001 Hoowo Hwouo ‘
Analog Channel Saturated: Analog Channel Fixed:
Specific Status 14-24 Setto 0. Table29-31 Table32 Table27
===-ssIEEToRa U1 U1 TET
123

37>BACKP|Cmd 0[24| 0]00110000]254/Mand/Dev245/5 PAs/Hart7/Txl/Swi /Hu2d/FLOO0O0AOOD,
MinPRrsp:5/MaxNumDVs :0/C£gChCne : 0/ExtDevStat 0000000
ManuID:0x00E0/LabDistID: 00E1/Profile:0|BE|

314 Cold Start, More Status
25€54>LSTHPICmda8| 0| €9l
lgz

36>LACKP|Cmd48(27| 0100000000] [0]:00000000 100000000 [2]:00000000 [3]:00000000
: o -0

() COM 9| Menitering active | Switch record off to stop menitoring. @) 0000004

Screenshot 7: The Tab 'Additional Status'

This is about command 48. As already
mentioned elsewhere, the slave manages the
responses to the two masters separately and
stores which response it has sent to a master.
If something changes in the additional status,
the software knows which master it affects
because it can compare it with the copies.

Test Interface Hart Slave C++ 8.0 / 12.11.2025 Page 13 of 15

mailto:walter.borst@borst-automation.de?subject=Embedded%20Devices%20Simulation
https://www.borst-automation.de/

- Walter Borst Fon:+49 (0) 4721 6985100
Bo "l n"tomntlon Kapitaen-Alexander-Strasse 39 E-Mail: walter.borst@borst-automation.de

Embedded Solutions 3747, Cuxhaven, GERMANY Home: https://www.borst-automation.de/

Technical Data Sheet
Appendix

Internet Links

Specification Documents

HART Specifications | FieldComm Group
MODEMs

RS 232 Modem Microflex

USB Modem Endress + Hauser

Viator USB Modem Pepperl+Fuchs
Ethernet-APL

Advanced Physical Layer FieldComm Group
Ethernet - To the Field Ethernet APL Organisation
HART-IP Developer Kit FieldComm Group

Download Location

The software package described in this document can be
downloaded via the following link:

https://github.com/BorstAutomation/Hart-Master-Slave-8.0.qit

Internet Links Hart Slave C++ 8.0 / 12.11.2025 Page 14 of 15

mailto:walter.borst@borst-automation.de?subject=Embedded%20Devices%20Simulation
https://www.borst-automation.de/
https://www.fieldcommgroup.org/hart-specifications
https://microflx.com/products/rs-232_hart?variant=792035143
https://www.de.endress.com/de/messgeraete-fuer-die-prozesstechnik/systemkomponenten-rekorder-data-manager/hart-usb-interface-commubox-fxa195?t.tabId=product-overview
https://www.pepperl-fuchs.com/germany/de/classid_1362.htm?view=productdetails&prodid=103586
https://www.fieldcommgroup.org/technologies/ethernet-apl
https://www.ethernet-apl.org/wp-content/uploads/2022/08/Ethernet-APL_Ethernet-To-The-Field_EN_FINAL_June-2021.pdf
https://store.fieldcommgroup.org/products/hart-ip
https://github.com/BorstAutomation/Hart-Master-Slave-8.0.git

Walter Borst Fon:+49 (0) 4721 6985100

Bo "t A Kapitaen-Alexander-Strasse 39 E-Mail: walter.borst@borst-automation.de
Embedded Solutions ;747> Cuxhaven, GERMANY Home: https://www.borst-automation.de/

Technical Data Sheet

Legal Issues
Conformity

This software package was developed to the best of my
knowledge and my belief. The basis is the specifications of the
Hart Communication Foundation in version 7.9.

However, it cannot be guaranteed that the software included in
this package meets the HCF specifications in all required
respects.

It is only possible to prove the conformity of this software after
the user has integrated the software into his device and
commissions HCF or a certified company to carry out this test.
Under no circumstances am I, Walter Borst, responsible for
carrying out such tests. Nor am I responsible for correcting any
deficiencies resulting from such a test.

Copyright

Copyright, Walter Borst, 2006-2024
Kapitaen-Alexander-Strasse 39, 27472 Cuxhaven, GERMANY
Fon: +49 (0)4721 6985100, Fax: +49 (0)4721 6985102
E-Mail: Office@walter-borst.de

Home: https://walter-borst.de/hart-communication-
software.html

No Warranty

Walter Borst expressly disclaims any warranty for the software
package. This software package and related documents are
provided "As Is".

By using this software package, the user agrees that no event
shall Borst Automation or Walter Borst make responsible or
liable for damages whatsoever. This includes, without limitation,
damages for loss of business profits, loss due to business
interruption, loss of business information, or any other
pecuniary loss, arising out of the use of or the inability to use
this software package.

Legal Issues

Hart Slave C++ 8.0 / 12.11.2025 Page 15 of 15

mailto:walter.borst@borst-automation.de?subject=Embedded%20Devices%20Simulation
https://www.borst-automation.de/
mailto:Office@walter-borst.de?subject=Hart%20Slave%20Datasheet
https://www.walter-borst.de/hart-communication-software.html
https://www.walter-borst.de/hart-communication-software.html

