

Walter Borst

Kapitaen-Alexander-Strasse 39

27472 Cuxhaven, GERMANY

Fon: +49 (0) 4721 6985100

E-Mail: walter.borst@borst-automation.de

Home: https://www.borst-automation.de/

Technical Data Sheet

Implemented Commands Hart Slave C++ 8.0 / 12.11.2025 Page 1 of 15

Hart Slave Stack C++ 8.0

Technical Data Sheet

C++ Source Code for an Embedded Firmware Module with

the following Properties

• No external dynamic memory management. The

amount of reserved RAM remains constant.

• The number of objects is determined at compile

time and startup.

• No operating system is required to integrate the

software. Timer and serial interrupts are enough.

• Simple asynchronous user interface to encapsulate

the time-critical part.

• Implements the Uart protocol and Hart Ip.

The implementation is based on the Hart Documents in:

HART Communication Protocol Specification, HCF_SPEC-13, FCG TS20013 Revision 7.09,

Release Date: 06 January 2023

Details for the Hart Protocol are provided via the following link:

https://www.fieldcommgroup.org/technologies/hart.

Hart Slave Stack C++ 8.0 ... 1

Introduction... 2
Implemented Commands ... 2
Architecture ... 3

Hart Slave C++ Code .. 4
User Interface .. 4

Public Functions .. 4
Data Interface .. 6

Coding Considerations ... 6
Hardware Abstraction .. 7
List of Files ... 7
System Requirements .. 8
Coding Conventions ... 9

Visual Studio 2022 ... 9
Test Environment .. 9

Prerequisites .. 9
Development Directory Structure .. 9
Project Structure ... 10

Getting Started ... 10
Test Interface ... 11

Appendix .. 14
Internet Links ... 14
Download Location .. 14
Legal Issues ... 15

Conformity ... 15
Copyright ... 15
No Warranty ... 15

mailto:walter.borst@borst-automation.de?subject=Embedded%20Devices%20Simulation
https://www.borst-automation.de/
https://www.fieldcommgroup.org/technologies/hart

Walter Borst

Kapitaen-Alexander-Strasse 39

27472 Cuxhaven, GERMANY

Fon: +49 (0) 4721 6985100

E-Mail: walter.borst@borst-automation.de

Home: https://www.borst-automation.de/

Technical Data Sheet

Implemented Commands Hart Slave C++ 8.0 / 12.11.2025 Page 2 of 15

Introduction

Implemented Commands
Description Remarks

Universal Commands

0 Read Unique Identifier See also Command Summary
Specification

1 Read Primary Variable

2 Read Loop Current And Percent Of Range

3 Read Dynamic Variables And Loop Current

6 Write Polling Address

7 Read Loop Configuration

8 Read Dynamic Variable Classifications Currently only the standard device
variables are supported: 244, 245, 246,
247, 248, 249, 0, 1, 2, 3.

9 Read Device Variables with Status

11 Read Unique Identifier Associated With Tag

12 Read Message

13 Read Tag, Descriptor, Date

14 Read Primary Variable Transducer Information

15 Read Device Information

16 Read Final Assembly Number

17 Write Message

18 Write Tag, Descriptor, Date

19 Write Final Assembly Number

20 Read Long Tag

21 Read Unique Identifier Associated With Long Tag

22 Write Long Tag

38 Reset Configuration Change Flag

48 Read Additional Device Status The slave module saves a copy of the
last additional device status sent for
each master and compares it with the
bitstream provided by the user
application.

Common Practice Commands

33 Read Device Variables

34 Write Primary Variable Damping Value

35 Write Primary Variable Range Values

49 Write Primary Variable Transducer Serial Number

54 Read Device Variable Information Currently only the standard device
variables are supported: 244, 245, 246,
247, 248, 249, 0, 1, 2, 3.

108 Write Burst Mode Command Number Commands 1, 2, 3 and 9 are currently
accepted. Burst messages are not (yet)
supported.

109 Burst Mode Control

512 Read Country Code

513 Write Country Code

I consider the now implemented set of commands to be the minimum that must be available

in a Hart slave. However, I also recommend making all important functions of a slave

accessible via universal and common practice commands and not using user-specific

commands. In this case it is not necessary to provide a device description. This saves

development time and development costs.

mailto:walter.borst@borst-automation.de?subject=Embedded%20Devices%20Simulation
https://www.borst-automation.de/

Walter Borst

Kapitaen-Alexander-Strasse 39

27472 Cuxhaven, GERMANY

Fon: +49 (0) 4721 6985100

E-Mail: walter.borst@borst-automation.de

Home: https://www.borst-automation.de/

Technical Data Sheet

Architecture Hart Slave C++ 8.0 / 12.11.2025 Page 3 of 15

Architecture

The package Portable Hart Slave includes all sources needed to represent the slave part of

the Hart protocol. The package is written in standard C++ and does not use any direct

connection to a system environment. Data link layer, application layer (command

interpreter) and network management of the Hart protocol are implemented. The connection

to the outside occurs via three interfaces: The User Interface, a Time Trigger and the HAL to

the Uart interface.

I used the C# environment to debug the Hart slave code during development. In fact, it is

not(!) a simulation that is used here. The firmware is simply embedded in a Windows

environment that allows the code to run in real time(!). In this way, all functions of the

implementation can be analyzed in detail. The analysis of the temporal processes takes place

in the range of milliseconds.

The C# software (White Box Test) was developed to create a transparent user interface for

visualizing the data and communication processes. Visual Studio 2022 and .NET 6.0 were

used to keep the programming effort within limits.

The command interpreter is triggered from the C# environment, but this happens within a

'real' thread and not within a worker thread from .NET:

 CommandInterpreter = new Thread(ExecuteCommandInterpreter);
 CommandInterpreter.Priority = ThreadPriority.Highest;
 CommandInterpreter.Start();

and in endless loop of the thread:

 result = (EN_Bool)HartSlaveDLL.BAHASL_WasCommandReceived();
 if (result == EN_Bool.TRUE8)
 {
 // Simulate typical application
 Thread.Sleep(20);
 command = HartSlaveDLL.BAHASL_ExecuteCommandInterpreter();

Hart Uart and

Hart Ip Slave

Command

Interpreter

HAL

OSAL & C++ to C# Test Adapter

User Interface

C++ C#

‘White Box’ Test Software

1 ms time
tick

Portable
Hart
Slave

User Firmware and

Data

Timecritical
Area

mailto:walter.borst@borst-automation.de?subject=Embedded%20Devices%20Simulation
https://www.borst-automation.de/

Walter Borst

Kapitaen-Alexander-Strasse 39

27472 Cuxhaven, GERMANY

Fon: +49 (0) 4721 6985100

E-Mail: walter.borst@borst-automation.de

Home: https://www.borst-automation.de/

Technical Data Sheet

User Interface Hart Slave C++ 8.0 / 12.11.2025 Page 4 of 15

Hart Slave C++ Code

User Interface

Public Functions
The following functions are realized in the module

HartS_UartIface.cpp in the class CUartSlave. In the DLL

interface for the test client the function names are preceeded by

BAHASL_.

Declaration Description

Operation

EN_Bool OpenChannel(
 TY_Word port_number_,
 EN_CommType type_);

The function allocates the selected com port if possible and starts its own working
thread for accessing the Hart services. The port_number_ is limited to the range of

1 .. 254. The selected communication type (type_) should be UART in this version

of the paket. The function returns TRUE8 if successful.
In the present implementation only a single channel is possible. Thus no channel

handle is required.

void CloseChannel(); It is required to call this function at least when the application is terminating.

Data Interface

void GetConstDataHart(
 TY_ConstDataHart* const_data_);

Copies constant data from the Hart slave area to the test application area.

void SetConstDataHart(
 TY_ConstDataHart* const_data_);

Copies constant data from the application area to the Hart slave area.

void GetDynDataHart(
 TY_DynDataHart* dyn_data_);

Copies dynamic data from the Hart slave area to the test application area.

void SetDynDataHart(
 TY_DynDataHart* dyn_data_);

Copies dynamic data from the application area to the Hart slave area.

void GetStatDataHart(
 TY_StatDataHart* stat_data_);

Copies static data from the Hart slave area to the test application area.

void SetStatDataHart (
 TY_StatDataHart* stat_data_);

Copies static data from the application area to the Hart slave area.

Command Interpreter

EN_Bool WasCommandReceived(); The function returns FB_Bool::TRUE8 if the Hart protocol has recently (a few
milliseconds ago) received a command.

TY_Word ExecuteCommandInterpreter(); This function calls the command interpreter in the slave to process any new data.
If the command was recognized and executed, the function returns the number of

the command. If this was not the case, the value 0xffff is returned.

Encoding

void PutInt8(
 TY_Byte data_,
 TY_Byte offset_,
 TY_Byte* data_ref_);

Insert an integer 8 into the byte array buffer pointed to by data_ref_ starting at the

position offset_.

void PutInt16(
 TY_Word data_,
 TY_Byte offset_,
 TY_Byte* data_ref_,
 EN_Endian endian_);

Insert an integer 16 into the byte array buffer pointed to by data_ref_ starting at the
position offset_. Start with the most significant byte if endian is MSB_FIRST(0),

which is the Hart standard.

mailto:walter.borst@borst-automation.de?subject=Embedded%20Devices%20Simulation
https://www.borst-automation.de/

Walter Borst

Kapitaen-Alexander-Strasse 39

27472 Cuxhaven, GERMANY

Fon: +49 (0) 4721 6985100

E-Mail: walter.borst@borst-automation.de

Home: https://www.borst-automation.de/

Technical Data Sheet

User Interface Hart Slave C++ 8.0 / 12.11.2025 Page 5 of 15

void PutInt24(
 TY_DWord data_,
 TY_Byte offset_,
 TY_Byte* data_ref_,
 EN_Endian endian_);

Insert an integer 24 into the byte array buffer pointed to by data_ref_ starting at the

position offset_. Start with the most significant byte if endian is MSB_FIRST(0),

which is the Hart standard.

void PutInt32(
 TY_DWord data_,
 TY_Byte offset_,
 TY_Byte* data_ref_,
 EN_Endian endian_);

Insert an integer 32 into the byte array buffer pointed to by data_ref_ starting at the

position offset_. Start with the most significant byte if endian is MSB_FIRST(0),

which is the Hart standard.

void PutInt64(
 TY_DWord data_,
 TY_Byte offset_,
 TY_Byte* data_ref_,
 EN_Endian endian_);

Insert an integer 64 into the byte array buffer pointed to by data_ref_ starting at the

position offset_. Start with the most significant byte if endian is MSB_FIRST(0),
which is the Hart standard.

void PutFloat(
 TY_Float data_,
 TY_Byte offset_,
 TY_Byte* data_ref_,
 EN_Endian endian_);

Insert a single precision IEEE 754 float value into the byte array buffer pointed to
by data_ref_ starting at the position offset. Start with the most significant byte if

endian is MSB_FIRST(0), which is the Hart standard.

void PutDFloat(
 TY_DFloat data_,
 TY_Byte offset_,
 TY_Byte* data_ref_,
 EN_Endian endian_);

Insert a double precision IEEE 754 float value into the byte array buffer pointed to
by dataRef starting at the position offset. Start with the most significant byte if

endian is MSB_FIRST(0), which is the Hart standard.

void PutPackedASCII(
 TY_Byte* asc_string_ref_,
 TY_Byte asc_string_len_,
 TY_Byte offset_,
 TY_Byte* data_ref_);

Insert a string (asc_string_ref_) of the length of asc_string_len_ in packed ASCII

format into the byte array buffer pointed to by data_ref_ starting at the position

offset_. It is recommented that asc_string_len_ is an ordinary multiple of 4.

void PutOctets(
 TY_Byte* stream_ref_,
 TY_Byte stream_len_,
 TY_Byte offset_,
 TY_Byte* data_ref_);

Copy a number of stream_len_ bytes into the byte array buffer pointed to by

data_ref_ starting at the position offset_.

void PutString(
 TY_Byte* string_ref_,
 TY_Byte string_max_len_,
 TY_Byte offset_,
 TY_Byte* data_ref_);

Copy a string from string_ref_ to data_ref_. The actual number of characters

stored cannot be greater than string_max_len_. If the string contains a null, the last
character saved is a null character if this does not exceed the string_max_len_

limit.

Decoding

TY_Byte PickInt8(
 TY_Byte offset_,
 TY_Byte* data_ref_);

Return the value of the byte in the byte array buffer pointed to by data_ref_ from
the position offset_.

TY_Word PickInt16(
 TY_Byte offset_,
 TY_Byte* data_ref_,
 EN_Endian endian_);

Return the value of the integer 16 from the byte array buffer pointed to by

data_ref_ from the position offset_. Assume that the most significant byte is the

first if endian is MSB_FIRST(0), which is the Hart standard.

TY_DWord PickInt24(
 TY_Byte offset_,
 TY_Byte* data_ref_,
 EN_Endian endian_);

Return the value of the integer 24 from the byte array buffer pointed to by dtaRef

at the position offset. Assume that the most significant byte is the first if endian is
MSB_FIRST(0), which is the Hart standard.

TY_DWord PickInt32(
 TY_Byte offset_,
 TY_Byte* data_ref_,
 EN_Endian endian_);

Return the value of the integer 32 from the byte array buffer pointed to by
data_ref_ from the position offset_. Assume that the most significant byte is the

first if endian is MSB_FIRST(0), which is the Hart standard.

TY_UInt64 PickInt64(
 TY_Byte offset_,
 TY_Byte* data_ref_,
 EN_Endian endian_);

Return the value of the integer 64 from the byte array buffer pointed to by

data_ref_ from the position offset_. Assume that the most significant byte is the

first if endian is MSB_FIRST(0), which is the Hart standard.

TY_Float PickFloat(
 TY_Byte offset_,
 TY_Byte* data_ref_,
 EN_Endian endian_);

Return the value of the single precision IEEE754 number from the byte array

buffer pointed to by data_ref_ from the position offset_. Assume that the most

significant byte is the first if endian is MSB_FIRST(0), which is the Hart standard.

mailto:walter.borst@borst-automation.de?subject=Embedded%20Devices%20Simulation
https://www.borst-automation.de/

Walter Borst

Kapitaen-Alexander-Strasse 39

27472 Cuxhaven, GERMANY

Fon: +49 (0) 4721 6985100

E-Mail: walter.borst@borst-automation.de

Home: https://www.borst-automation.de/

Technical Data Sheet

Coding Considerations Hart Slave C++ 8.0 / 12.11.2025 Page 6 of 15

TY_DFloat PickDFloat(
 TY_Byte offset_,
 TY_Byte* data_ref_,
 EN_Endian endian_);

Return the value of the double precision IEEE754 number from the byte array

buffer pointed to by data_ref_ from the position offset_. Assume that the most

significant byte is the first if endian is MSB_FIRST(0), which is the Hart standard.

void PickPackedASCII(
 TY_Byte* string_ref_,
 TY_Byte string_len_,
 TY_Byte offset_,
 TY_Byte* data_ref_);

Generate a string and copy it to the buffer pointed to by sb. The final string should

have the length string_len. The packedASCII source is a set of bytes in the byte
array buffer pointed to by data_ref_, starting at index offset_.

Note: The string length has to by a multiple of 4 while the number of

packedASCII bytes is a multiple of 3.

void PickOctets(
 TY_Byte* stream_ref_,
 TY_Byte stream_len_,
 TY_Byte offset_,
 TY_Byte* data_ref_);

Copy a number (numOctets) of bytes from the byte array buffer pointed to by

dataSource to the user buffer pointed to by dataDestination.

void PickString(
 TY_Byte* string_ref_,
 TY_Byte string_max_len_,
 TY_Byte offset_,
 TY_Byte* data_ref_);

The function reads a string from a buffer (data_ref_) starting at index offset_ and
stores the characters in string_ref_. The string buffer is read from until a null

character appears or string_max_len_ is reached. If possible, the null character is

also saved.

Internal

void FastCyclicHandler(TY_Word time_ms_); Although this function is not accessible to the test client, it is required for the

operation of the Hart protocol. The function must be called by a separate task

approximately every millisecond to enable timing in the communication.
The time_ms parameter indicates how many milliseconds have passed since the

last call. Usually this should be a value of 1 in most cases.

Data Interface
The data interface provides three different types of data that

can be written or read by the user. A structure is provided for

each data type, which can be found in the file

WbHartS_Structures.h.

Constant data does not change. In most systems it is stored in

flash memory and cannot be written.

Dynamic data is data that can always change. This includes

measured values and status information.

Static data is used to configure a device. It is usually changed

by external access. Whenever static data is changed, the

configuration change flag must be set in Hart and the

configuration change counter in Hart must be incremented.

Coding Considerations
Microcontrollers which are used today for HART devices are at

least 16 Bit microcontrollers. Otherwise the complexity of the

measurement and number of parameters could not be

managed.

The amount of memory is always critical because software kind

of behaves like an ideal gas. It uses to fill the given space.

Nevertheless, the coding of the Hart Slave was done as carefully

as possible regarding the amount of flash memory and RAM.

The Hart Protocol requires a strict timing specially for burst

mode support and the primary and secondary master time slots.

To provide the optimum transparency to the user to allow all

kinds of debugging and to give the opportunity to optimize code

in critical sections, the Hart Slave Firmware is not realized as a

library but delivered as source code.

 Low amount of memory.

 The user needs source

code.

mailto:walter.borst@borst-automation.de?subject=Embedded%20Devices%20Simulation
https://www.borst-automation.de/

Walter Borst

Kapitaen-Alexander-Strasse 39

27472 Cuxhaven, GERMANY

Fon: +49 (0) 4721 6985100

E-Mail: walter.borst@borst-automation.de

Home: https://www.borst-automation.de/

Technical Data Sheet

Hardware Abstraction Hart Slave C++ 8.0 / 12.11.2025 Page 7 of 15

Hardware Abstraction
A Hardware Abstraction Layer is needed to design the interface

of a software component independent from the hardware

platform. In this very small interface of the Hart master a

distinction of HAL and OSAL was not made. Therefore only an

Operating System Abstraction Layer is defined which is covering

all the needs of an appropriate HAL.

List of Files
Category Name Description

02-Code

01-Common OSAL.h The Operating System Abstraction Layer is the top header. This is where the

central connection to the respective hardware or software platform takes

place. The header OSAL.h can only exist once, while a special
implementation (OSAL.cpp) exists for each specific hardware or software.

HartCoding.cpp/h This module combines functions that carry out the encoding and decoding of
communication primitives and data objects.

HartFrame.cpp/h The hart frame is a construct used to collect all information which is needed

to encode and decode data of so called service primitives like responses and

requests, which are finally octet streams.

HartLib.h Some classes for the definition of HART constants.

02-Code\01-Common

01-Interface HartSlaveIface.cpp/h This is where the actual interface of the master implementation is located,

which would also have to be integrated into an embedded system. The

version with the DLL is only intended for testing under Windows.
You can find a detailed description of the provided functions in the 'Public

Functions' chapter.

WbHartS_Structures.h This file contains structures which are accessed at the outer interface as well

as in some modules in the master kernel.

WbHartS_TypeDefs.h This file contains type definitions which are used in all modules in the Hart
master kernel.

WbHartUser.h Limits applied by the user of the hart master software.

HartDevice.cpp/h This module is nearly empty and subject to be removed.

02-AppLayer HartChannel.cpp/h The channel manages a communication interface and the associated
propperties. The channel also uses services to conduct Hart commands.

HartBurst.cpp/h Handling of the burst mode from the perspective of the application.

AnyCommandIntp.cpp/h Any command interpreter for common practice and user commands.

03-Layer7 HartService.cpp/h In simple terms, a service executes a Hart command by passing a request to
Layer2 of the Hart protocol. In doing so, it returns a handle to the caller, with

which the calling program can check the status. A service is only considered

completed when the caller has read the response (e.g. FetchConfirmation).

HartData.cpp/h Data defined for the Hart commands.

UniCommandIntp.cpp/h Universal commands interpreter.

 OSAL is including the

HAL.

mailto:walter.borst@borst-automation.de?subject=Embedded%20Devices%20Simulation
https://www.borst-automation.de/

Walter Borst

Kapitaen-Alexander-Strasse 39

27472 Cuxhaven, GERMANY

Fon: +49 (0) 4721 6985100

E-Mail: walter.borst@borst-automation.de

Home: https://www.borst-automation.de/

Technical Data Sheet

System Requirements Hart Slave C++ 8.0 / 12.11.2025 Page 8 of 15

04-Layer2

01-Uart

02-HartIp

HSuartLayer2.cpp/h and

HSipLayer2.cpp/h

This module implements the entire state machine of the Hart communication

protocol (CHartSM) including the state machines for sending (CTxSM) and

receiving (CRxSM) bytes.

HSuartMacPort.h and

HSipMacPort.h

The interface to the MAC port is relatively narrow and can be defined

generically. However, the implementation depends on the hardware and
software environment. That's why there is only a header at this point, while

the files HMuartMacPort.cpp and HMipMacPort.cpp can be found in the

OSAL area.

HSuartProtocol.cpp/h

and

HSipProtocol.cpp/h

This protocol layer controls the UART interface on the lower level and calls
the higher status machines when necessary (events). After this call, a ToDo

Part occurs, which in turn affects the Uart or HartIp interface.

Monitor.h The same applies to the Monitor function as to the MacPort. At this point

only the interface can be defined. The implementation takes place in the

specific part.

02-Code\02-Specific\01-WinDLL

01-Shell BaHartSlave.cpp/h The implementation for the calls to the Windows DLL is located here. In

practice, it is just a shell through which the functions in the CUartMaster

module are called.

02-OSAL

01-Uart

02-HartIp

HSuartMacPort.cpp and

HSipMacPort.cpp

The Execute method is called directly by the fast cyclic handler. This
basically drives all status machines in the Hart implementation. Here too, the

method is divided into an Event handler and a ToDo handler.

Monitor.cpp On the one hand, there are methods that are mapped to the interface of the

Windows DLL. In addition, there are a number of functions that are included

with the kernel functions. Since this module is so small overall, the methods
were not implemented in two different files.

OSAL.cpp The Operating System Abstraction Layer maps general functions to the

operating system.

WinSystem.cpp/h The OSAL concept cannot be applied to all functions that are required.

These functions were implemented in the code of this module.

System Requirements
It is difficult to estimate the system requirements for targets

based on different micro controllers and different development

environments. The following is therefore giving a very rough

scenario for the target system estimated resources.

Item Requirement/Size Comment

RAM 32k Depends very much on the addressing structure of the

controller and the used compiler and linker.
ROM (Flash) 100k

Timing 1-2 ms Timer

interrupt

2 ms is the minimum requirement, 1 ms would be much

better.

50 ms cyclic call

from task level

This is needed to run the command interpreter.

I/O UART and Hart MODEM

Rx and Tx functions

Carrier detection would be helpful but is not required.

System Simple math +-*/

memcpy()

memset()

memcmp()

Only a few standard library functions are required. There is

no special need for multi tasking, messaging or semaphores.

1 ms timing

resolution

Table 1: Embedded System Requirements

mailto:walter.borst@borst-automation.de?subject=Embedded%20Devices%20Simulation
https://www.borst-automation.de/

Walter Borst

Kapitaen-Alexander-Strasse 39

27472 Cuxhaven, GERMANY

Fon: +49 (0) 4721 6985100

E-Mail: walter.borst@borst-automation.de

Home: https://www.borst-automation.de/

Technical Data Sheet

Coding Conventions Hart Slave C++ 8.0 / 12.11.2025 Page 9 of 15

Coding Conventions
Regarding this issue, I have only defined some formats that makes the scope of a label

clearer. It's just to make the code easier to read. This simple type of coding convention can

be used in both C++ and C#.

Snake Case

local_variable function_param_ m_member_var mo_member_object

Variable with local scope A function parameter has
a tailing underscore

Basic type private
member variable

Complex object member

s_member_var so_member_object

Basic type static private
member variable

Complex static object
member

Pascal Case

PublicVariable PublicObject AnyMethod

Variable with public or
internal scope

Object with public or
internal scope

No difference between
public and private

Visual Studio 2022

Test Environment

There are only one project in this solution. The C++ Hart

Slave is encapsulated in the HartSalveDLL project.

The solution is directly in the path on which you copied the

package to.

Prerequisites

The solution must be opened with VS

2022. However, the community version

is sufficient. There are no further

requirements.

Development Directory Structure

The project for the Hart Slave in C++ can be

found in the directory:

.\02-Device\02-Specific\01-WinDLL\01-Hart\

01-Slave.

However, most of the C++ sources used are

located in the directory .\02-Device\01-Generic\

and its subdirectories.

The test software is only be found as executable

in the path 03-DebugBech. The executable file

TestCppSlave.exe and the simulation DLL

BaHartSlave-7.6.dll are both located here.

When you start debugging the executable ist

started and loading the dll which is

respresenting the slave device.

mailto:walter.borst@borst-automation.de?subject=Embedded%20Devices%20Simulation
https://www.borst-automation.de/

Walter Borst

Kapitaen-Alexander-Strasse 39

27472 Cuxhaven, GERMANY

Fon: +49 (0) 4721 6985100

E-Mail: walter.borst@borst-automation.de

Home: https://www.borst-automation.de/

Technical Data Sheet

Getting Started Hart Slave C++ 8.0 / 12.11.2025 Page 10 of 15

Project Structure

The project structure is very similar to the directory structure.

Here too there is a strict distinction between generic area and

specific area.

The specific contents of the files are described in more detail in the

list below.

In contrast to the last published documentation, there is one

significant difference. The data link layer is divided into the areas

Uart and HartIp. The same applies to the Mac port in the OSAL

directory.

Getting Started
1. Unzip the file hart-master-slave-c++-demo-7.6.1.zip into

a directory of your choice. For getting the required

password please send an e-mail to:

Hart@walter-borst.de.

2. Open the solution .\03-Slave\CppHartSlave-7.6.sln with

Visual Studio 2022. It has to be 2022. Other versions are

not supported yet. Unless you have 2022 not installed on

your computer. You can download it from microsoft:

https://visualstudio.microsoft.com/de/downloads/.

3. The community version is sufficient enough and free of

charge.

4. Perform a 'Build All'.

5. Start debugging and investigate the source code

mailto:walter.borst@borst-automation.de?subject=Embedded%20Devices%20Simulation
https://www.borst-automation.de/
mailto:Hart@walter-borst.de?subject=Hart%20Slave%20Datasheet
https://visualstudio.microsoft.com/de/downloads/

Walter Borst

Kapitaen-Alexander-Strasse 39

27472 Cuxhaven, GERMANY

Fon: +49 (0) 4721 6985100

E-Mail: walter.borst@borst-automation.de

Home: https://www.borst-automation.de/

Technical Data Sheet

Test Interface Hart Slave C++ 8.0 / 12.11.2025 Page 11 of 15

Test Interface
The Windows test adapter is a software developed in C#. This

test adapter uses a Windows DLL in which the Hart Master is

embedded. The DLL implements the HART Protocol, whose

firmware was written in C++ for real time requirements.

Figure 1: Architecture of the Test Environment

The executable file for the test adapter is located at the

following location:

.\03-Slave\03-Test\01-Windows\03-DebugBench\BaTestHartSlave.exe

When the executable file

is started, the container

DLL for the slave is

automatically loaded.

The work surface is

divided into two halves.

Settings are made in the

tab area, while the lower

area is reserved for a

monitor that shows the

communication process.

While the following tabs

mostly deal with the slave

data, the inputs in the

interface have a fairly

direct effect on the

running software. For

example, it is possible to

activate burst mode

without having to use the

Hart command 109.

Screenshot 1: The Tab 'Hart'

Test Adapter

(Test Client)

C#

PC Com Port

or Network
Modem

m
Any Hart Master

Hart Uart and

Hart Ip Slave

C++

HAL

DLL (OSAL)

Reuseable Source Code

mailto:walter.borst@borst-automation.de?subject=Embedded%20Devices%20Simulation
https://www.borst-automation.de/

Walter Borst

Kapitaen-Alexander-Strasse 39

27472 Cuxhaven, GERMANY

Fon: +49 (0) 4721 6985100

E-Mail: walter.borst@borst-automation.de

Home: https://www.borst-automation.de/

Technical Data Sheet

Test Interface Hart Slave C++ 8.0 / 12.11.2025 Page 12 of 15

Data Exchange

The following tabs deal with the transmitter data. If this data is

edited, this is indicated by a yellow color. The menu button also

turns yellow and must be clicked for the change to take effect in

the slave.

If a parameter is changed by a master connected to the slave, this

change appears in the display and the parameter in question is

colored red

If Hart IP is used, additional

parameters are needed to

connect to the slave. However,

currently the demo version

works on localhost.

Screenshot 2: The Tab 'Hart Ip'

The tab 'Identifier' mainly deals

with data related to command 0.

Screenshot 3: The Tab 'Identifier'

The tab 'Transducer' mainly

deals with data related to the

commands 14 and 15.

Screenshot 4: The Tab 'Transducer'

mailto:walter.borst@borst-automation.de?subject=Embedded%20Devices%20Simulation
https://www.borst-automation.de/

Walter Borst

Kapitaen-Alexander-Strasse 39

27472 Cuxhaven, GERMANY

Fon: +49 (0) 4721 6985100

E-Mail: walter.borst@borst-automation.de

Home: https://www.borst-automation.de/

Technical Data Sheet

Test Interface Hart Slave C++ 8.0 / 12.11.2025 Page 13 of 15

The tab 'Device' mainly deals

with data related to the

commands 12, 13, 16 and 20.

Screenshot 5: The Tab 'Device'

The 'Device Variables' tab

provides access to the data

needed to implement device

variables. Currently, only device

variable codes in the range 244-

249 and 0..3 are accepted. These

are the only required device

variables.

Of course, further variables for

the user are possible at any time.

Screenshot 6: The Tab 'Device Variables'

This is about command 48. As already

mentioned elsewhere, the slave manages the

responses to the two masters separately and

stores which response it has sent to a master.

If something changes in the additional status,

the software knows which master it affects

because it can compare it with the copies.

Screenshot 7: The Tab 'Additional Status'

mailto:walter.borst@borst-automation.de?subject=Embedded%20Devices%20Simulation
https://www.borst-automation.de/

Walter Borst

Kapitaen-Alexander-Strasse 39

27472 Cuxhaven, GERMANY

Fon: +49 (0) 4721 6985100

E-Mail: walter.borst@borst-automation.de

Home: https://www.borst-automation.de/

Technical Data Sheet

Internet Links Hart Slave C++ 8.0 / 12.11.2025 Page 14 of 15

Appendix

Internet Links
Specification Documents
HART Specifications FieldComm Group

MODEMs
RS 232 Modem Microflex
USB Modem Endress + Hauser
Viator USB Modem Pepperl+Fuchs

Ethernet-APL
Advanced Physical Layer FieldComm Group
Ethernet - To the Field Ethernet APL Organisation
HART-IP Developer Kit FieldComm Group

Download Location
The software package described in this document can be

downloaded via the following link:

https://github.com/BorstAutomation/Hart-Master-Slave-8.0.git

mailto:walter.borst@borst-automation.de?subject=Embedded%20Devices%20Simulation
https://www.borst-automation.de/
https://www.fieldcommgroup.org/hart-specifications
https://microflx.com/products/rs-232_hart?variant=792035143
https://www.de.endress.com/de/messgeraete-fuer-die-prozesstechnik/systemkomponenten-rekorder-data-manager/hart-usb-interface-commubox-fxa195?t.tabId=product-overview
https://www.pepperl-fuchs.com/germany/de/classid_1362.htm?view=productdetails&prodid=103586
https://www.fieldcommgroup.org/technologies/ethernet-apl
https://www.ethernet-apl.org/wp-content/uploads/2022/08/Ethernet-APL_Ethernet-To-The-Field_EN_FINAL_June-2021.pdf
https://store.fieldcommgroup.org/products/hart-ip
https://github.com/BorstAutomation/Hart-Master-Slave-8.0.git

Walter Borst

Kapitaen-Alexander-Strasse 39

27472 Cuxhaven, GERMANY

Fon: +49 (0) 4721 6985100

E-Mail: walter.borst@borst-automation.de

Home: https://www.borst-automation.de/

Technical Data Sheet

Legal Issues Hart Slave C++ 8.0 / 12.11.2025 Page 15 of 15

Legal Issues

Conformity
This software package was developed to the best of my

knowledge and my belief. The basis is the specifications of the

Hart Communication Foundation in version 7.9.

However, it cannot be guaranteed that the software included in

this package meets the HCF specifications in all required

respects.

It is only possible to prove the conformity of this software after

the user has integrated the software into his device and

commissions HCF or a certified company to carry out this test.

Under no circumstances am I, Walter Borst, responsible for

carrying out such tests. Nor am I responsible for correcting any

deficiencies resulting from such a test.

Copyright
Copyright, Walter Borst, 2006-2024

Kapitaen-Alexander-Strasse 39, 27472 Cuxhaven, GERMANY

Fon: +49 (0)4721 6985100, Fax: +49 (0)4721 6985102

E-Mail: Office@walter-borst.de

Home: https://walter-borst.de/hart-communication-

software.html

No Warranty
Walter Borst expressly disclaims any warranty for the software

package. This software package and related documents are

provided "As Is".

By using this software package, the user agrees that no event

shall Borst Automation or Walter Borst make responsible or

liable for damages whatsoever. This includes, without limitation,

damages for loss of business profits, loss due to business

interruption, loss of business information, or any other

pecuniary loss, arising out of the use of or the inability to use

this software package.

mailto:walter.borst@borst-automation.de?subject=Embedded%20Devices%20Simulation
https://www.borst-automation.de/
mailto:Office@walter-borst.de?subject=Hart%20Slave%20Datasheet
https://www.walter-borst.de/hart-communication-software.html
https://www.walter-borst.de/hart-communication-software.html

